KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Сайен Бейлок - Мозг и тело. Как ощущения влияют на наши чувства и эмоции

Сайен Бейлок - Мозг и тело. Как ощущения влияют на наши чувства и эмоции

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Сайен Бейлок, "Мозг и тело. Как ощущения влияют на наши чувства и эмоции" бесплатно, без регистрации.
Перейти на страницу:

Шеффер и Стерн познакомились более двадцати пяти лет назад, причем именно благодаря танцу. В те времена Стерн танцевал с труппой «Тэнди Бил», которая пользовалась популярностью на сцене центра исполнительских искусств Северной Калифорнии. Шеффер же работал над своей кандидатской диссертацией по математике в Калифорнийском университете в городе Санта-Круз, что не мешало ему проводить довольно много времени на кафедре танца. Двое молодых людей быстро поладили друг с другом, а несколько лет спустя занялись совместным исследованием связи танца и математики{71}.

В 1990 году они реализовали свой первый общий сценический проект, первый математический танец, под названием: «Доктор Шеффер и мистер Стерн: двое парней и их танец о математике». Представление настолько понравилось аудитории, что ребята отправились в поездку по стране, чтобы ставить свой математический танец в школах и других образовательных учреждениях. Вскоре к ним с вопросами начали обращаться учителя, которые интересовались, можно ли использовать часть действий из спектакля у себя в классе. Тогда Шеффер и Стерн взялись за новый проект: они решили переложить свой перформанс в ряд математических действий для классной комнаты. Так родился «Математический танец»[9].

Они начали с самого начала – с действия, точнее танца, который служит вступлением к перформансу. Называется танец «Подсчет рукопожатий». По словам самих Стерна и Шеффера, это вступление представляет собой практически «водевильную» последовательность рукопожатий, в ходе которых двое героев все никак не могут найти подходящий для них обоих способ поздороваться. А когда наконец придумывают, как это можно сделать, то выясняют: они так переплели свои конечности, что теперь не могут распутаться. Как вспоминают авторы перформанса, когда они только начали работать над проектом, то и сами были удивлены тем, как много существует способов пожать друг другу руки. «Подсчет рукопожатий» исследует математическое понятие «сочетание»[10]. Ученики работают над этим упражнением в парах. Они создают последовательность из движений, пытаясь выяснить, сколько разных типов рукопожатий между двумя людьми с использованием одной руки существует. Например, первый участник может схватить правой рукой левую руку второго участника; затем своей левой рукой – его правую или левую, или своей правой – его правую. Ответ кажется очевидным: поскольку у каждого школьника две руки, значит, существует четыре возможные комбинации[11]. Однако ученики подходят к делу творчески и начинают искать варианты, чтобы увеличить это число. Так они узнают, что означает понятие «дискретное множество».

Дискретные множества, такие как рукопожатия или, например, стаи животных, состоят только из целых чисел – в отличие от воды или высоты деревьев, которые можно измерить в числах с дробями. Ученикам поначалу бывает сложно разобраться в этих «тонкостях». Но занявшись таким нехитрым делом, как обмен рукопожатиями в танце, они на самом деле решают задачу из области дискретной математики, а точнее – из комбинаторики, раздела математики, изучающего дискретные объекты и множества и их сочетания. Физические ощущения помогают ученикам понять абстрактные математические термины – в данном случае смысл выражения «дискретное множество».

Разобравшись с термином «сочетание объектов» и с тем, как проверяются все возможные комбинации, школьники тем самым осваивают сложное математическое понятие, с которым будут сталкиваться до конца своего обучения в колледже. Рассмотрим следующие алгебраические задачи для средней школы:

У Джона есть две рубашки и три пары брюк. Сколько у него есть возможных комплектов одежды?

Ответ: 2 × 3 = 6 возможных комплектов (поскольку Джон не нудист и всегда надевает и рубашку, и брюки).

У Салли в автомобиле есть CD-проигрыватель на шесть дисков. Всего у нее 100 дисков. Сколько возможных комбинаций загрузки плеера она может составить?

Ответ: при загрузке первого диска она может выбирать из 100 CD; для второго – из 99, для третьего – из 98; для четвертого – из 97; для пятого – из 96; для шестого – из 95. Итак: 100 × 99 × 98 × 97 × 96 × 95 = 858 277 728 000 (если Салли не передумает и продолжит заряжать по шесть дисков за раз).

Ученики, имевшие возможность физически «прочувствовать», что означает понятие «дискретное множество», оказываются лучше подготовленными к встрече с этими задачами. Им проще связать их с собственным опытом и примерить на себя различные возможные комбинации, чтобы определить, насколько правильно выведенное ими алгебраическое уравнение. Подобно третьеклассникам из эксперимента Гленберга, которые отсчитывали определенное количество рыбок для каждого животного из задачи про зоопарк, ученики средних классов, поняв, что такое «дискретный» и что количество возможных комбинаций ограничено, сумеют привязать значение абстрактных понятий из алгебры к чему-то конкретному.

В другом упражнении из «Математического танца» ученики встают попарно и десять раз подбрасывают вверх монетку. От того, что выпадет – орел или решка, зависит, кто из пары будет выполнять движение. Но прежде чем начать подбрасывать монетку, они составляют прогноз, кому сколько раз придется двигаться. До начала упражнения большинство учеников предполагают, что каждый из них будет делать свое движение примерно столько же раз, сколько и напарник. Но вскоре они понимают, что в реальности все обстоит несколько иначе. Что пятидесятипроцентная вероятность выпадения орла или решки не означает, что все получится именно так, по крайней мере, до тех пор, пока ты не сделаешь несколько тысяч итераций, то есть повторов. Дети убеждаются: чем больше раз они будут подбрасывать монетку, тем ближе к 50 процентам будут подбираться, а это ключевой момент для понимания теории вероятности.

И наверное, самое удивительное в «Математическом танце» то, что само по себе движение имеет большое значение. Танцевать и одновременно подбрасывать монетку – важное условие урока на тему закона вероятности, который преподносят Шеффер и Стерн, потому что в процессе движения мы, как правило, запоминаем идеи и концепции лучше, чем когда стоим на месте.

Люди, занимающиеся танцем, давно заметили, что тело – надежный помощник памяти. Когда артисты балета разучивают новый хореографический этюд, они физически проигрывают движения в заданной последовательности, чтобы лучше запомнить шаги. И когда их просят воспроизвести разученное, они, как правило, склонны восстанавливать в памяти танцевальные движения порциями, на основе определенной последовательности положений, которые занимает тело. Они используют свое тело как запоминающее устройство, помогающее им организовывать свои шаги, а впоследствии и воспроизводить их. Точно так же и движения, связанные с математическими понятиями, помогают ученикам «проиграть» ту или иную задачу, «прочувствовать», как отдельные понятия связаны между собой, в результате чего им бывает легче загрузить их в свою память.

Но не только танцоры понимают связь между телом и разумом – она очевидна для всех, у кого физическое движение составляет часть профессии. Все выдающиеся спортсмены – от фигуристов и гимнастов до прыгунов в воду – знают, что изумительные фигуры, которые они демонстрируют, основываются на принципах математики и физики. Возьмем, к примеру, британского прыгуна в воду Томаса Дейли. Он покорил мировую сцену прыжков в воду своим ошеломительным выступлением на Играх содружества в Дели в 2010 году, на которых завоевал две золотые медали, а также мальчишеским задором, обаянием и привлекательной внешностью. Ожидалось, что на Олимпийских играх в Лондоне он повторит свой успех. Однако существовал и значительный риск, что к тому моменту он сильно вырастет – ведь Тому было всего 16 лет. «Мой рост – 1,72 метра. Если я вырасту еще на 5 сантиметров, могут начаться проблемы, – сообщил он журналисту BBC после своего блестящего выступления в Индии. – Когда ты слишком высокий, то крутишься медленнее и просто не успеваешь сделать все вращения до погружения в воду. Остается только пальцы скрестить и надеяться, что я не вытянусь так уж сильно»{72}.

К моменту начала Олимпийских игр 2012 года Том вырос на четыре сантиметра, до 1,76 метра. К счастью, эффектный последний прыжок спортсмена обеспечил ему место на пьедестале: с Игр он ушел завоевателем бронзовой медали и любви домашней публики. Дэвид Бекхэм прислал ему СМС с поздравлениями, а премьер-министр Дэвид Кэмерон лично зашел проведать прыгуна{73}. Но дорога к победе была нелегкой. За эти два года Тому пришлось освоить еще несколько видов прыжков, чтобы быть уверенным в том, что, несмотря на свой рост, он сможет выполнять множественные вращения так, чтобы они получили наивысшие оценки за сложность. Несомненно, его тренеры, да и он сам, хорошо понимали: при подготовке новой программы самое веское слово будет за физикой.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*